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Orbitally stabilizing control for the
underactuated translational oscillator
with rotational actuator system:
Design and experimentation
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Abstract
Underactuated translational oscillator with rotational actuator systems are simplified mechatronic systems introduced
to investigate the despin maneuver phenomenon for dual-spin spacecrafts in mechanical engineering. The conventional
research work for translational oscillator with rotational actuator systems mainly focuses on stabilizing control of equili-
brium points. In this article, an orbitally stabilizing control strategy is proposed to steer oscillating movements of a trans-
lational oscillator with rotational actuator system. Based on the natural periodicity of translational oscillator with
rotational actuator system self-sustained oscillation, the dynamics is analyzed to derive the periodically orbital functions
of the translational oscillator with rotational actuator system. Then, a proper control Lyapunov function following the
principle of energy conservation is designed to obtain orbitally stabilizing controller for target periodical oscillation
orbits of the translational oscillator with rotational actuator system. Finally, the validity of the presented control strategy
is demonstrated via the simulations and experiments.
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Introduction

Underactuated mechanical systems (UMS) are a class
of control systems which have less control inputs than
the number of configuration variables.1 The transla-
tional oscillator with rotational actuator (TORA) or
RTAC (Rotational Translational Actuator) is a bench-
mark of UMS, consisting of an unactuated transla-
tional oscillation cart and an actuated rotating
actuator, which is originated from a simplified model
of a dual-spin spacecraft and initially introduced
mainly by Bupp et al.2 For exhibiting nonlinear interac-
tion between translational and rotational movements,
the dynamical characteristics of TORA systems have
been paid widely attention during the past decades,3–6

and the control problem for TORA systems present
many theoretical challenges and deserve further
investigations.

Conventionally, the control objective of many ambi-
tious works about TORA system is to realize semi-
global or global stabilization of static equilibrium
points.7,8 Namely, the control objective is to employ the
control input acting or the actuator to stabilize both the

translational position of the unactuated oscillating cart
and the rotational position of actuated rotating actua-
tor. Inversely, how about employing the control input
acting to force the translational cart to oscillate periodi-
cally or track the desired orbits in state space of the
TORA system? Compared with the two inverse control
objectives, any static equilibrium point of the TORA
system is quite analogous to the special periodic orbit
of the forcing stable oscillations, that is, the period of
the oscillation orbit is zero. Consequently, stabilizing
control of equilibrium points can be seen as orbitally
stabilizing control of the special target periodic orbits.
In practice, the orbitally stabilizing control of the
TORA systems, similar to that of other UMS,9–13 is to
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force their degrees of freedom (DOFs) to track some
periodic oscillating orbits in state space, which is harder
to achieve but has promising application prospects.

Although the problem of forcing oscillations in
many other practical application systems which present
analogous working principles, for example, tuned mass
damper,14 vibrating screens,15 and vibration con-
veyors16, is a classical area of research, orbitally stabi-
lizing control in UMS is mainly focused on theoretical
developments or based on simulations,17,18 which
remains underexplored. For benchmarks of UMS,19,20

the major difficulty of the orbitally stabilizing control
compared with the stabilizing control of equilibrium
points is orbit planning and orbit tracking control
design. As early as in 1995, Chung and Hauser21 stud-
ied stabilizing controller of dynamic orbit for a
pendulum-like UMS. Then, Shiriaev et al.22 presented
a tool based on systematic virtual constraints for gener-
ation and orbital stabilization of periodic orbits, which
could be applied to several pendulum-like UMS.23

Aiming at benchmarks of UMS with one underactu-
ated DOF, Gao et al.24 also employed the orbitally sta-
bilizing controller based on virtual constraints to
TORA system successfully. However, for the orbitally
stabilizing control based on virtual constraints tech-
nique, its physical meaning is actually ambiguous and
the design procedure is relatively complicated.

In physical platform, with the TORA dynamic
movements, matched external frictional effects are
unavoidably encountered, and unless dealt with the
problems in a proper way, they would lead to mission
failure such as deteriorating the performances of the
control methods and giving rise to unstable results. In
the above works on TORA system, the stabilizing
control strategies of equilibrium points were validated
by experimental results;4,5 however, most of orbitally
stabilizing control strategies were based on simula-
tions.21–24

In this article, following our previous work,24 the
novel periodic orbits of TORA system are proposed,
which are the natural extension to the equilibrium
points. Comparing with our previous work on the peri-
odic orbits of TORA system to steer the translational
cart oscillating synchronously with the eccentric rota-
tional actuator,24 this article presents new periodic
orbits of TORA system to force the translational oscil-
lation cart oscillating periodically while the eccentric
rotational actuator being stabilized. Then, a concise
orbitally stabilizing controller is designed to track effec-
tively the proposed periodic orbits. Specifically, target
periodic orbits of the TORA system are derived by ana-
lyzing the dynamics directly, and then a control
Lyapunov function including system energy is followed
to obtain a stabilizing controller for the derived peri-
odic orbits. Finally, simulation and experimental
results demonstrate the feasibility and efficiency of the
presented orbitally stabilizing control. Moreover, to the
best of our knowledge, it is the first method validation

through experimental results on TORA platform for
oscillating orbit stabilizing control.

A successfully orbitally stabilizing control of the
TORA system demonstrates the possibility of forcing
the translational cart to oscillate with one actuated
rotation motion. This is an important inherent charac-
teristic of the TORA system which has potential appli-
cations to the active vibration control of vibrating
screens in coal processing.15,25 It is well known that the
vibrating screen has the performance to select different
materials based on tracking the different vibration
amplitudes and orbits. One of the disadvantages of clas-
sical vibration control for vibrating screens is the cost
since a full-actuation or an even redundant-actuation
control system is needed.26 However, based on the char-
acteristic of the TORA system, only one actuation is
needed to control the vibration. Therefore, the idea of
orbitally stabilizing controlling the TORA system could
be applied to active vibration control of vibrating
screens with a low cost.

In the next section, the dynamics of TORA system
and target periodic orbits are described. The following
section provides the design of the orbitally stabilizing
controller with friction compensation. The fourth sec-
tion presents some discussions of the simulations and
experiments on the designed orbitally stabilizing con-
troller. The conclusion of this article is summarized in
the final section.

Dynamics and target orbits

In this section, we first present the dynamics for TORA
system and then design the target orbits.

System dynamics

The TORA system is depicted in Figure 1. The inner
cart having mass M is connected to an outer fixed wall
by a linear spring of stiffness k. The inner cart is

Figure 1. TORA system configuration.
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constrained to have one-dimensional translational
movement along x-direction. The eccentric rotational
actuator having mass m is attached to the cart and
moment of inertia I about its center of mass, and the
eccentric distance of the actuator is r. Control input
torque applied to the actuator is denoted as t. The
dynamics of TORA system can be derived as follows2

M+mð Þ€x+mr cos u€u�mr sin u _u2 + kx+Nx =0

ð1Þ

mr cos u€x+ mr2 + I
� �

€u= t ð2Þ

where x, _x, and €x denote the translational position,
velocity, and acceleration of the cart, respectively; u, _u,
and €u denote the angular position, angular velocity,
and angular acceleration of the eccentric rotational
actuator, respectively; g denotes the gravity constant;
and Nx denotes the disturbance acting on the transla-
tional cart.

The kinetic energy of the TORA system is calculated
as follows8

K=
1

2
M+mð Þ _x2 +mr cos u _x _u+

1

2
mr2 + I
� �

_u2

ð3Þ

where K is always positive. The potential energy of the
eccentric rotational actuator is (1=2)kx2. Hence, the
total energy (including kinetic energy and potential
energy) of the TORA system is given as follows

E=K+
1

2
kx2 ð4Þ

By neglecting the disturbance force Nx and differen-
tiating total energy of the system E, together with the
system dynamics (equations (1) and (2)), we have the
following

_E= t _u ð5Þ

Integrating both sides of the above equation (5) we
have the following

ðt

0

t _u tð Þdt=E tð Þ � E 0ð Þø�E 0ð Þ ð6Þ

A system is passive if it has a positive semi-definite
storage function S(j) and a bilinear supply rate

v(u, y)= uTy, satisfying
Ð k

0 v(u(t), y(t))dtøS(j(k))

�S(j(0)) for the input u, the output y, and kø0.27 In
equation (6), E(t) can be seen as storage function S(j);

therefore, the TORA system having t as input and _u as
output is passive. This passivity property of the system
dynamics is a key character of UMS since a passive
UMS has a stable origin and a feedback control law

always exists for _E\ 0, and will be used in control
design part by including system energy item into the
control Lyapunov function.

Target orbit design

Note that the the angular position u is actuated vari-
able in the TORA system, which can be controlled
directly by the control input torque t. However, the
translational position x, which is an unactuated DOF,
must be controlled through coupling interaction. In
other words, the nonlinear coupling interaction
between the angular position of the actuator and trans-
lational position of the cart provides the basis for the
control objective of TORA system. Based on this, it is
straightforward that by fixing the angular position u

and letting the control input torque t be zero in equa-
tions (1) and (2), TORA system is degraded to a simple
mass–spring system whose oscillation period is calcu-
lated as follows

T=2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M+mð Þ

k

r
ð7Þ

This periodic oscillating phenomenon with clear
physical meaning motivates us to select the target orbit
of translational cart in the form of sine function as
follows

xd tð Þ= x0 + xA sin
2p

T
t+u

� �
ð8Þ

where x0 and u denote the different initial position and
initial phase, respectively; xA denotes the amplitude of
periodic orbit. Meanwhile, the target orbit of the
eccentric rotational actuator can be selected in the form
of some constant as follows

ud = n+að Þp ð9Þ

where a denotes the target physical angular position,
a 2 (0, 1), and n=0,61,62, . . ..

Once the system states x and u are steered by a
proper control input torque to the given amplitude xA
and the given orbit (equation (9)) from initial condi-
tions, that is, oscillation period T is unchangeable but
the amplitude xA is only controllable item in periodic
orbit (equation (8)), the target total energy Ed of the
TORA system will be fixed like a simple mass–spring
system, which can be written in the form of spring
potential energy as follows

Ed =
1

2
kx2A ð10Þ

Remark 1. Once we let x0 = xA =0 in equation (8),
which means xd(t)=0, the designed periodic orbit of
translational cart can shrink to the static equilibrium
point. However, the arbitrary ud can be seen as the
static equilibrium point in equation (9) because the
actuator will stabilize on the plane perpendicular to
g-direction. In this case, the designed periodic orbits
(equations (8) and (9)) can be simplified to the static
equilibrium point.
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Remark 2. Once we let ud =(n+0:5)p in equation (9),
which means the actuator is stabilized in x-direction,
then, TORA system is degraded to a simple mass–
spring system for no coupling interaction acting
between the rotation motion and periodic oscillation of
the cart. If the actuator tracks its target orbit selected
as ud 6¼ (n+0:5)p, for example, exactly selected as
ud =2p, there will need some control input torque to
keep the actuator at the target orbit position.

As control objective of this article shown in
Figure 2, we will illustrate the simplified translational
motion and rotational motion of the TORA system if
the target orbits are selected as xd(t)j(x0 =0) and
ud =2p. According to Figure 2(a), the initial condition
is chosen as ½x, _x, u, _u�Tj(t=0) = ½0, 0, 0, 0�

T. First, once
the input torque t works, based on the coupling inter-
action between translational and rotational move-
ments, both the translational position of the cart and
the angular position of the rotor need to be controlled.
Figure 2(b) implies the fact that the cart of transla-
tional motion along x is inversely proportional to Nx.
Then, we can see that the actuator is rotated at the
angular position (0\ u \ p), while the cart is driven
close to xA by the coupling interaction to meet the law
of conservation of momentum along the x-axis direc-
tion. Similarly, if the actuator is driven to the angular
position (p \ u \ 2p) by the input torque t, the cart
can be driven closely to �xA. This can be explained
according to Figure 2(c). Next, once the angular posi-
tion is stabilized at 2p (also shown in Figure 2(a)), the
amplitude of the cart motion reaches xA. Meanwhile,
the nonlinear coupling interaction generated from
translational and rotational movements would disap-
pear, and then the TORA system is degraded to a sim-
ple mass–spring system. Finally, if Nx is neglected in
the dynamics, the cart will keep persistent oscillation;
otherwise, friction compensation will be considered to
track target orbits.

Orbitally stabilizing control design and
stability analysis

In this section, we first present the orbitally stabilizing
control design and then provide the corresponding sta-
bility analysis based on LaSalle’s Invariance Theorem.
After that, to promote the proposed control design to
practical TORA platform, compensation control and
friction modeling identification will be introduced.

Controller design

According to passivity property of the system dynamics
(equation (5)) and target periodic orbits (equations (8)
and (9)), the following control Lyapunov candidate is
proposed

V x, _xð Þ= 1

2
k1e

2
E +

1

2
k2e

2
u +

1

2
k3 _u2 ð11Þ

where k1, k2, and k3 denote positive constants, and
eE =E(t)� Ed, eu = u� ud. Note that the control
Lyapunov candidate V(x, _x) is positive definite function.

Differentiating equation (11), we have the following

_V x, _xð Þ= _u k1eEt1 + k2eu + k3€u
� �

ð12Þ

where t1 denotes the orbitally stabilizing controller of
the TORA system. According to the second stability
theorem of Lyapunov, we define the following equation

k1eEt1 + k2eu + k3€u, � k4 _u ð13Þ

where k4 denotes positive constant. Based on equations
(12) and (13), we have the following

_V x, _xð Þ= �k4 _u2 ł 0 ð14Þ

Figure 2. The tracking process of orbitally stabilizing control
for TORA system from equilibrium point to the target orbits:
xd(t) = xA sin ((2p=T)t + u), ud = 2p. (a) initial conditon; (b)
condition of 0 \ u \ p; (c) condition of p \ u \ 2 � p.
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if and only if _u=0, _V(x, _x)=0.
According to equation (13) and system dynamics

(equations (1) and (2)), t1 can be calculated as follows

t1 = � O(k4 _u+ k2eu)+ k3mrh1 cos u

k1eEO+ k3 M+mð Þ ð15Þ

where O denotes (M+m)(mr2 + I)� (mr cos u)2 and h1
denotes �mr sin u _u2 + kx.

In equation (15), the obtained controller t1 can guar-
antee that the time derivative of the control Lyapunov
candidate is negative semi-definite. Therefore, the
closed-loop control system is stable in the Lyapunov
sense. To avoid the singularity, note that the

denominator cannot be zero. Consequently, the control
parameters k1 and k3 have to satisfy the following

k3
k1
6¼ � eEO

M+m
ð16Þ

Remark 3. Note that eE and O in equation (16) are
time-varying functions, whose variation ranges are
related to the orbit amplitude xA of the cart and physi-
cal parameters of the given TORA system. Based on
this, choose suitable k1, k3, and xA can make sure the
value of left item is always beyond the time-varying
range of right item in equation (16).

To verify the feasibility and efficiency of the pro-
posed orbitally stabilizing controller t1, simulations
are performed as follows. First, the simulations of
physical parameters are chosen the same as the TORA
platform (see Figure 7): M=5:2 kg; m=0:3 kg;
I=0:001503kgm2; r=0:0695m; k=1428N=m.
Then, simulations initial state is chosen as ½x, _x, u, _u, t1�T

j(t=0) = ½0, 0, 0, 0, 0�
T and followed by the chosen target

orbits xd(t)=0:008 sin (16:11t+0:57p), ud =2p.
Finally, the control parameters in equation (15) are
tuned as k1 =1, k2 =4:8, k3 =0:4, k4 =1:2.

Figure 3 shows the simulation results of controller t1
driving TORA system. Note that the translational posi-
tion x can basically track xd(t) and realize target peri-
odic oscillation after 1 s for the cart. For the actuator,
the angular position u can precisely stabilize at 2p after
4 s. When both the cart and the actuator have tracked
their target orbits, the total energy E will be stabilized
at Ed as expected. Moreover, the value of controller t1
is lager than 0:2Nm at 0 s and then decrease rapidly
within 60.05Nm. After 4 s, the controller t1 presents
periodical changes to stabilize the eccentric rotational
actuator.

Stability analysis of orbitally stabilizing controller

The stability of the closed-loop orbitally stabilizing
controller is proved based on LaSalle’s Invariance
Theorem.

Theorem 1. For the TORA dynamics (equations (1) and
(2)), the proposed orbitally stabilizing controller (equa-
tion (15)) can drive each DOF, that is, x, _x, u, and _u,
converging to the target periodic orbits

lim
t!‘
½x, _x, u, _u�T = ½xd tð Þ, _xd tð Þ, ud, 0�T

Proof. Based on equation (14), the time derivative of the
control Lyapunov candidate, namely, _V(x, _x), is nega-
tive semi-definite. Therefore, V(x, _x) is bounded mono-
tone decreasing function, that is, V(x, _x) 2 L‘. Then,
by combining the TORA dynamics (equations (1) and
(2)), each DOF in TORA system is bounded, we have
the following

Figure 3. Simulation results of the proposed controller t1 for
TORA system and the target orbits are chosen as
xd(t) = 0:008 sin (16:11t + 0:57p), ud = 2p.
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x, _x, u, _u 2 L‘ ð17Þ

€x, €u 2 L‘ ð18Þ

Substituting equations (17) and (18) into equation
(15) we have the following

t 2 L‘ ð19Þ

Next, let Gm be the largest invariant set contained in
G, which is defined as follows

G= (x, _x, u, _u)
�� _V x, _xð Þ=0

� 	
ð20Þ

According to the definition (20) and the inequality
(14), _V(x, _x)=0, if and only if _u=0. Hence, in G we
have the following

_u=0 ð21Þ
€u=0 ð22Þ
u=const ð23Þ

We investigate x and _x in G. By neglecting the dis-
turbance force Nx and substituting equation (21) into
TORA dynamics (equations (1) and (2)), the input tor-
que of TORA system can be calculated as follows

t1 = �mr cos u � kx
M+mð Þ ð24Þ

Combining equations (15) and (21), the input torque
of TORA system can also be calculated as follows

t1 = � k2euO+ k3mr cos u � kx
k1eEO+ k3 M+mð Þ ð25Þ

Obviously, based on equations (24) and (25), we
have the following

k

M+mð Þ
k1
k2

mr cos u � eEx= eu ð26Þ

where we let u=const:, ud, consequently, we have
eu = u� ud =0. Therefore, equation (26) can be calcu-
lated as follows

k

M+mð Þ � eEx=0 ð27Þ

By combining equations (5) and (27) and differen-
tiating both sides of equation (27), we have the
following

k

M+mð Þ � eE _x+ t1 _ux
� �

=0 ð28Þ

According to equations (21) and (5), and by differ-
entiating both sides of equation (28), we have the
following

eE€x=0 ð29Þ

By substituting equation (27) into (29), we have the
following

eE €x+
k

M+m
x

� �
=0 ð30Þ

According to equation (7), to solve the above equa-
tion, we have the following

eE =
1

2
k C2 � x2A
� �

=0 ð31Þ

and

x=C sin
2p

T
t+s

� �
ð32Þ

where we define C denoting the amplitude of periodic
orbit and s denoting initial phase in equation (8), that
is, C, xA and s,u. Then, by differentiating both sides
of equation (32), we have the following

_x= xA
2p

T
cos

2p

T
t+u

� �
= _xd tð Þ ð33Þ

Finally, we have (x, _x, u, _u)= (xd, _xd, ud, 0) in Gm

based on LaSalle’s Invariance Theorem. The proposed
controller (equation (15)) can drive x, _x, u, and _u con-
verging to the target orbits.

Friction compensation control

For TORA system, it is straightforward to see that the
proposed controller t1, that is, equation (15), has good
control performance to force the translational cart to
oscillate periodically and the actuator to track the
desired orbit. However, it can be hardly applied to the
physical platform, which always exists kinetic friction
negatively influencing orbitally stabilizing control.

In TORA platform, with the translational cart oscil-
lating periodically, the matched external frictional
effects are unavoidably encountered, which would lead
to mission failure such as giving rise to unstable results.
For this, a simple feedforward control with consider-
ation for frictional compensation is added to keep the
performance of proposed orbitally stabilizing controller.

As shown in Figure 4, let Dt denote the compensa-
tion control torque and it is straightforwardly to see

t = t1 +Dt ð34Þ

where t dentes control input torque applied to the
TORA platform. According to the TORA dynamics
(equations (1), (2), and (34)), we have the following

Figure 4. The redesign process of the orbitally stabilizing
controller with compensation control.
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€x= �f �ð Þt1 � g �ð Þh1 �
mr cos uDt + mr2 + I

� �
Nx

O
ð35Þ

where f(�)=mr cos u=O and g(�)=mr2 + I=O. To
compensate Nx, let mr cos uDt +(mr2 + I)Nx =0, we
have the following

Dt = � mr2 + I

mr cos u
Nx ð36Þ

Substituting equations (15) and (36) into equation
(34), physical control input torque t applied to the
TORA platform can be calculated as follows

t=� O(k4 _u+ k2eu)+ k3mrh1 cos u

k1eEO+ k3 M+mð Þ �mr2 + I

mr cos u
Nx ð37Þ

Remark 4. Note that the angular positions np are the
transient singularities of the compensation control tor-
que in equation (36). In practice, Dt can drive u pass
through the positions as np quickly to avoid the transi-
ent singularities. Hence, if the target orbit of eccentric
rotational actuator is selected as ud = np, u can be
dynamically stabilized near the ud.

Remark 5. Comparing the construction of two control-
lers (equations (15) and (37)), Dt is the key difference
which can be regarded as the continuous excitation

source of the translational and rotational movements.
Hence, Dt plays the role of position feedback in an
alternative way. For the controller (equation (37)), as
long as u and _u are nonzero, they will continually cause
the oscillations of translational cart due to the inherent
coupling interaction. Based on this, by self-sustaining
rotational motions of the actuator, the cart can track its
target orbit and not be stabilized even for the existence
of translational friction, which is actually inevitable.

The following step is the definition of a suitable fric-
tion model and the identification of the relative para-
meters. Based on the complicated estimates methods
proposed by Pavlov et al.4 and Lee and Chang,5 the
cart in TORA system moves with changes in its transla-
tional velocity _x, and the identified kinetic friction is
obtained from the variation in cart velocity _x. Then, we
simplify a suitable friction model for the TORA plat-
form as follows

Nx =m1 M+mð Þg � sgn _xð Þ+m2 _x ð38Þ

where m1 denotes the coulomb frictional coefficient,
and m2 denotes the viscous frictional coefficient.

Without control torque acting, in the initial TORA
conditions such as ½x, _x, u, _u, t�Tj(t=0) = ½0:0107, 0,
p=2, 0, 0�T, the TORA platform can be degraded to a
simple mass–spring system, whose free oscillation phe-
nomenon will finally disappear. Based on this, the fric-
tion model Nx can be identified through the outputs
coming from the free oscillation of the translational
cart. As shown in Figure 5, the outputs, that is, x or _x,
coming from simulation data and experimental data
can fit well each other within 0.5 s. Consequently, it can
be concluded that m1 is 0.017 and m2 is 0.5 in equation
(38). After 0.5 s, the outputs x or _x cannot fit well for
the phase deviation, which could be hardly neglected
once the amplitude of the translational cart is near equi-
librium point. To avoid phase deviation, choose enough
large amplitude of the target orbit such as 0.008m,
which can hold the precision of the proposed friction
model Nx.

Simulations and experiments

In the section, based on simulations, we first make the
performance comparison between t1 and t, that is, the
orbitally stabilizing controller (equation (15)) and phys-
ical control input torque (equation (37)), to verify the
validity of the compensation control design. After that,
both simulation and experimental results are included
to verify the validity of physical control input torque
(equation (37)) applied to the TORA platform.

To make the performance comparison between t1
and t, in the following simulation works, first, the
given physical parameters and initial conditions keep
same as the TORA platform (see Figure 7). Then, the
target periodic orbits are chosen as
xd(t)=0:008 sin (16:11t� 0:65p), ud =2p. Finally, the

Figure 5. The position and velocity of the translational cart in
free oscillation; initial TORA conditions are chosen as
½x, _x, u, _u, t�T j(t = 0) = ½0:0107, 0, p=2, 0, 0�T (black solid line:
experimental data based on TORA platform; red dashed line:
simulation data based on TORA dynamics).
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control parameters in (equation (37)) are tuned as
k1 =1, k2 =10:2, k3 =0:78, k4 =2:25.

Figure 6 shows the different state outputs compari-
son based on t1 and t. For the outputs based on the
orbitally stabilizing controller t1, with the energy dissi-
pation caused by kinetic friction, the translational cart
cannot maintain the self-sustained oscillations and then
achieves static equilibrium within 2 s. Meanwhile, the
total energy E is reduced rapidly to zero within 2 s.
After that, the eccentric rotational actuator would sta-
bilize at at 2p. In comparison, the performance of phys-
ical control input torque t is better to track both target
periodic orbits. The translational cart can realize target
periodic oscillation after 4 s, and the total energy E
dynamically stabilizes at Ed after 4 s. The angular posi-
tion u will be fluctuated around 2p. This phenomenon
is synchronously caused by the compensation control

torque Dt. Furthermore, note that the value of physical
control input torque t is not more than 60.4Nm,
which is needed to input with time varying for overcom-
ing the negative influence of kinetic friction.

The following is to verify the validity of physical
control input torque (equation (37)) applied to the
TORA platform, which is shown in Figure 7. In experi-
mental works on TORA platform, the details including
the physical parameters, initial conditions, the target
periodic orbits, and the control parameters are the
same in the above simulation works.

For the TORA platform, actuated by the DC servo
motor, the eccentric rotational actuator rotates around
the center of the motor axle. The position of transla-
tional cart is collected in real time by the incremental
optical encoder (1024p/10mm). The angular position
of the actuator is collected in real time by the angular
encoder (4096 PPR) attached to the top of the DC servo
motor. The physical constraints of the DC servo motor
in equation (37) are artificially set as follows

tj jł 0:496Nm ð39Þ

The programmable logic controller (PLC; Siemens
S7-200) is used to read sensor feedback signals and con-
vey them to graphical user interface (GUI) in the host
PC; meanwhile, it also outputs the calculated control
orders to the DC servo motor to control the movements
of the cart and the actuator, so that the real-time con-
trol task can be accomplished. Moreover, the sampling
period of the PLC is 20ms.

Figure 8 shows the experimental results of the pro-
posed physical control input torque (equation (37))
applied to the TORA platform. According to the
experimental results, there are phase deviations in the
curves of x, t, u, and E by comparison the simulation
results before 2.5 s because the response time leads to
control delay in real applications. After 2.5 s, the
experimental curves of x, t, u, and E are in good accor-
dance with their simulation curves. Moreover, the
translational cart oscillates along x-direction and the
oscillation center is the equilibrium point, and the peri-
odic oscillation amplitude of translational cart is
0.008m because the total system energy is compensated
after 2.5 s. Note that both the simulation and experi-
mental orbit curves of the translational cart are not
absolute sine curves. One reason is that the nonlinear

Figure 6. The performance comparison between t1 and t

based on simulations; target orbits are chosen as
xd(t) = 0:008 sin (16:11t� 0:65p), ud = 2p.

Rotary encoder 

DC motor 

Displacement encoder Motor driver

Signal conversion module

PLC controller 

Figure 7. The outline of TORA system platform.
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coupling interaction coming from the oscillating
motion of the cart can act on the actuator, which influ-
ences on oscillating period of the cart. The other reason
is that the control errors is always produced by unmo-
deled dynamics of the actuator in TORA platform and
disturbances.

Conclusion

Orbitally stabilizing control of the UMS is interesting
and challengeable. This article presents the novel peri-
odic orbits and a concise orbitally stabilizing control
design for the underactuated TORA system. The design
of target periodic orbits assumed that the translational
oscillation cart oscillating periodically, while the

eccentric rotational actuator is stabilized at the fixed
angle. The orbitally stabilizing control extends the tra-
ditional control objective of TORA system in compari-
son with its stabilizing control of equilibrium points. A
proper control Lyapunov function including system
energy is designed to obtain orbitally stabilizing con-
troller. The asymptotic stability of the closed-loop orbi-
tally stabilizing controller is proved based on LaSalle’s
Invariance Theorem. Simulations and experiments are
performed with consideration for friction compensa-
tion to demonstrate the availability of the presented
orbitally stabilizing controller applied to the TORA
platform.

In future work, the orbitally stabilizing control
design will be applied to determine the scope of the
possible target periodic orbits with different motor
drive capabilities and friction conditions. Moreover,
the closed-loop compensation control based on differ-
ent periodic orbits will be further characterized to
maintain the stability of the TORA system.
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