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Abstract
Telemanipulation in power stations commonly require robots first to open doors and then gain access to a new workspace.
However, the opened doors can easily close by disturbances, interrupt the operations, and potentially lead to collision damages.
Although existing telemanipulation is a highly efficient master–slave work pattern due to human-in-the-loop control, it is
not trivial for a user to specify the optimal measures to guarantee safety. This paper investigates the safety-critical motion
planning and control problem to balance robotic safety against manipulation performance during work emergencies. Based
on a dynamic workspace released by door-closing, the interactions between the workspace and robot are analyzed using a
partially observable Markov decision process, thereby making the balance mechanism executed as belief tree planning. To
act the planning, apart from telemanipulation actions, we clarify other three safety-guaranteed actions: on guard, defense and
escape for self-protection by estimating collision risk levels to trigger them. Besides, our experiments show that the proposed
method is capable of determining multiple solutions for balancing robotic safety and work efficiency during telemanipulation
tasks.

Keywords Human–robot interaction · Robot–environment interaction · Dynamic workspace · Self-protective behaviors ·
Motion planning

Introduction

People always pursue high-efficiency performance in emer-
gencies while ensuring personal safety [1]. For example, in
fire rescue work, putting out fires, smoke-diving and the han-
dling of patients and heavy tools are typical tasks, in which
good balance ability can be critical for safety-guaranteed
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and task productivity [2]. Uncertain fire conditions and the
excessive use of protective equipment further increase the
challenges placed on the balance control system. Although
existing telemanipulation is a highly efficient master–slave
work pattern because of human-in-the-loop control, it is not
trivial for the human operators to specify the optimal mea-
sures to guarantee robotic safety [3–5].

The ability to balance safety against performance in
humans is coordinated and fast even when a work-related
accident is not anticipated. Unfortunately, the robots are
always not well trained such knowledge, to take appropriate
measures to deal with the potential emergency during tele-
manipulation tasks. Beyond the basic capabilities of moving
and acting autonomously, it is also essential to assure the
robots’ survival to protect themselves from harmful states or
collisions when physically interacting with their workspace
[6–8]. It is really true, especially in the search-and-rescue
process [9–11], robotic dexterous performing task is easy to
encounter uncertainties coming from environments in real
human–robot collaborative manipulation. Moreover, these
conditions to perform a task may need robots to open doors
first and then gain access to a new workspace for their end-
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effectors operations [12–15]. For example, utilize robots to
manipulate the electronic equipments in power stations [16–
20]. Typical power station operations are involved a large
number of refrigerator-like electric cabinets equipped with
electronic monitoring, which need to be checked at close
range or switching operated by hands after opening the
cabinet door. Similar with many robot–environment inter-
active processes, leverage robots to further operations in the
cabinet’s internal workspace released by door-opening; this
procedure is susceptible to environmental uncertainty such as
the wind force. The uncertain force could significantly drive
the opened door with close trends and then lead to collision
damages, threatening the robots’mechanical safety andwork
performance. In such cases, the balance ability is essential
and vital to interrupt the current manipulation and display
the corresponding self-protection at appropriate times.

In this work, we propose a novel balancing robotic safety
against manipulation performance approach by planning
safety-critical motions and control during work emergen-
cies in the door-closing scenario. Specifically, a dynamic
disturbance model of the restricted workspace released by
door-opening is established. And then, the workspace and
robot interactions are analyzed using a partially observable
Markov decision process (POMDP), therebymaking the bal-
ancemechanism executed as belief tree planning. To perform
the planning, besides the telemanipulation actions, we clar-
ify other three types of safety-guaranteed actions: on guard,
escape, and defense for self-protection by estimating colli-
sion risk levels to trigger them. Finally, we propose three
motion controllers based on risk-time optimization to act the
planned self-protective actions.

The main contributions of this paper are summarized as
follows:

1. To our knowledge, this paper yields the first evalu-
ative framework to balance robotic safety against its
operation performance during dynamic interactions in a
door-closing workspace, within the collision risk consid-
eration coming from environmental uncertainty;

2. Apart from the manipulation actions, this paper clarifies
other three safety-guaranteed actions: on guard, elbow
defense the door, and escape out respectively to the colli-
sion riskwith low,middle or high levels to act the balance
policy, which is verified real true based on the experi-
ments with our build-up robot platform;

3. Additionally, this paper is to provide guidance for the
safe manipulation and deal with emergencies of a class
of rescue robot operations and the upgrade of motion
planning.

The rest of this paper is organized as follows. Related
works are described in “Related work”, “Workspace con-
struction and problem formulation” explains the workspace

construction and problem formulation. A novel balancing
safety against performance method is proposed in “Proposed
method”. “Experiments and results” validates the efficiency
of the proposed method by experiments. Finally, conclusions
are drawn in “Conclusions”.

Related works

Related works about emergency measures, balance mecha-
nism and workspace construction are introduced briefly in
this section.

The studies on robotic emergency measures for self-
protection are both control and planning interesting. From
the perspective of the reflex-based control, self-protective
behaviors are categorized as the state-action association of
behaviors, which traditionally depends on the subsumption
architecture [21]. In this paradigm, the robot canquickly react
to the stimulus since the sensory input from the dynamic
environment directly triggers the coupled action from a
wide variety of measures. Given this, many studies have
focused on time-delay compensation [22,23] or reflex-based
self-protective patterns and successfully applied to some
humanoid robots, i.e., grasp reflex [24] and mainly slip [25].
For them, facing accidental collision risks, generating and
maintaining stable controllers are their preventive measures.
From the perspective ofmotion planning in some constrained
environments [26], the self-protective response is to avoid
one or more dynamic obstacles with uncertain motion pat-
terns [27]. For them, it is necessary to plan smooth and
collision-free orbits or trajectories to perform the desired task
[28]. In the sense that, the self-protection to guarantee safety
in the situation is based on around the dynamic obstacles to
avoid collision paths.

Robotic balance mechanism is the prerequisite optimiza-
tion policy-decision process for taking emergency measures,
knowingwhen to pursue high-efficiency performance, or pre-
fer a security guarantee. Traditionally, owing to the exclusive
pursuit of the best performance value, this mechanism is not
soflexible even redundant that it could be ignored in both sub-
jective and objective aspects. Similarly, the exclusive pursuit
in another extreme case is absolute security.

The aforementioned control and planning technologies
are applied to a typical workspace released by door-opening
[29,30], which has also received abundant attention during
the last decades. When door-opening actions work in prac-
tice [31], the opened door matches external disturbances,
such as uncontrolled rotational inertia to get closing trends,
are unavoidably encountered. Unless dealt with in a proper
way, they would deteriorate the performances of the follow-
ing operations and even give rise to inconsistent task results,
which leads to mission failure. In some cases, the researchers
would suitably treat the unlocked door driven by external dis-
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turbances depending on the further task’s difficulty. For easy
tasks such as opening the door only to traverse it [32,33], it
is no need to care too much about the unlocked door’s state
information due to a quick pass through after door-opening.
However, complex tasks such as opening the door to get
handwork inside [34,35], are generallymore time-consuming
and need more operating precision. We can not ignore the
uncertain disturbances [36] coming from the unlocked door
leading to a potential risk of collision damages. Compared
with the above-mentioned simple task, cabinet handwork
inside limits the end-effector’sworkspace andkeeps the robot
in the unlocked door’s adverse influence range for a long
time. To solve this problem, professional roboticists initially
took a dual-arm mobile manipulator scheme [37,38]. More
precisely, using one arm to defense the unlocked door’s clos-
ing trends disturbances while planning another arm to work
inside. They applied this theoretical pattern to an expensive
PR2 (Personal Robot 2) to fetch a beer from a refrigerator
[39]. Based on this pattern, the schemementioned above even
could be used in multi-arm robot systems; unfortunately, it
is not friendly for robots with only one arm.

In this work, we focus on a single-armmobilemanipulator
robot in human–robot collaborative manipulation to respond
to emergencies. The unlocked door has closing disturbances
during handwork after door-opening.

Workspace construction and problem
formulation

Consider a time-varying workspace W (t) released from
its door-opening action, is constrained by the door’s frame
Dframe and its leaf Dleaf . In the top view to see W (t), Fig.
1 shows the dynamic interactive progress, which seems like
a shrinking Chinese folding fan when Dleaf is driven by the
force such as a sudden wind Fw (t).

Simultaneously, due to the resisting force Fr (t) coming
from rotation friction and air resistance, Dleaf would stop
close at a certain position pn . After these, the state equation
for W (t) can be written as:

ω (t) = f [θ (t) , Fw (t) − Fr (t) , t] , (1)

where θ (t) denotes the angle between Dframe and Dleaf ,
ω (t) denotes the angular velocity and f (·) denotes a time-
variation function.

In this paper, note that we do not concern aboutW (t) hav-
ing the enlarged dynamic space situation. Thus, standing in
the fan-shaped area, the robot is always facing the potential
collision risk. We assume that the robotic chassis is neces-
sarily treated as a collision-free part due to equipped with
some indispensable precision sensors. After these, the goal
is to plan a policy π inW (t) to get the maximum value func-

tion V (π) and then control to execute π between the start
configuration q0 ∈ R

D and the goal configuration qd ∈ R
D ,

which can be written as:

max
{
V (π)| π : q0 → qd ∈ R

D
}
s.t. W (t), (2)

where q is the robotic degree of freedom (DOF) and D is the
number of the DOF.

Proposedmethod

In this section, Fig. 2 shows the proposed balancing safety
against performance method, which is mainly completed by
three aspects, i.e., balancemechanism, interaction estimators
and responding measures, that will be presented in detail.

Balancemechanism

The balance mechanism is a collaborative control based on
the risk estimators, choosing the manual or automated policy
decisions to deal with the workspace.

The upper part of Fig. 2 shows the human–robot interac-
tion for master–slave manipulation tasks after door-opening.
The control system to generate action sequences involves an
autonomous controller’s network interaction with the human
operators. Under the received manual policy and action com-
mands, assuming no significant delays or communication
issues occur between the master and the slave, the robot
platformcouldperformdexterousmanipulation in efficiency-
critical applications such as turn on a power switch for the
human in the control loop.

The lower part of Fig. 2 shows the robot–environment
interaction for door-closing emergencies. In the policy deci-
sions block, a partially observable Markov decision process
(POMDP) [26] architecture simulates the interaction rela-
tionship between agents decisions and their environment,
which models our robot acting in the partially observable
stochastic compressed workspace. It is defined formally as a
7-tuple (S,A,Z, T , O, R, b0), where:

S: indicates a state set of Dleaf at the current time;
A: indicates an action set that the robot will perform at

the next moment;
Z: indicates an observation set ofDleaf at the current time;
T : the function T (s, a, s′) = p(s′|s, a) indicates the prob-

abilistic state transition from s ∈ S to s′ ∈ S, when the robot
in state s ∈ S takes an action a ∈ A. It can model our
imperfect states set of Dleaf changes and robot control;

O: the function O(s, a, z) = p(z|s, a) indicates a set
of conditional observation probabilities currently observed,
which can capture sensors noise;

R: the function R(s, a) defines a real-valued reward for
the robot when it takes action a ∈ A in state s ∈ S.
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Fig. 1 The dynamic model of the restricted workspace

Fig. 2 Pipeline in terms of the balancing safety against performance approach

As analyzed previously, the POMDP planning aims to
choose a policy π that maximizes its value based on A and
S, but S is not known exactly due to imperfect observation.
Instead, the robot maintains a belief, which is a probability
distribution over S. The robot starts with an initial belief b0.
At time t , it infers a new belief, according to Bayes’ rule
[40], by incorporating information from the action at taken

and the observation zt received:

bt
(
s′) = τ (bt−1, at , zt )

= ηO
(
s′, at , zt

) ∑
s∈S

T
(
s, at , s

′) bt−1(s), (3)

where η is a normalizing constant.
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Figure 3 shows that a POMDP policy prescribes the action
at a belief. With the policy π and an initial belief b0, the
expected value function Vπ can be written as:

Vπ (b0) = E

( ∞∑
t=0

γ t R (st , at+1) |b0, π
)

, (4)

where st is the state at time t , at+1 = π(bt ) is the action
that the policy π chooses at time t , and γ ∈ [0, 1] is a dis-
count factor. The expectation V is taken over the sequence
of uncertain state transitions and observations over time.

A key idea in POMDP planning is the belief tree [41], as
shown in Fig. 3. Each node of a belief tree corresponds to a
belief b. At each node, the tree branches on all actions in A
and all observations in Z . If a node with belief b has a child
node with belief b′, then b′ = π(b, a, z). Conceptually, we
may think of POMDP planning as a tree search in the belief
space, the space of all possible beliefs that the mobile manip-
ulator may encounter. To find an optimal plan for a POMDP,
using Bellman’s equation relationship [42], we traverse the
belief tree from the bottom up and compute an optimal action
recursively at each node:

V ∗ (b)
�= max

π
Vπ (b) = max

a∈A

{∑
s∈S

b (s) R (s, a)

+ γ
∑
z∈Z

p (z |b, a ) V ∗ (
b′)

}
, (5)

where we notice that every value function Vπ that satisfies
Eq. (5) is both necessary and sufficient for the induced policy
to be optimal.

Based on the above discussions, in the sense that, our
POMDP planning is a special case of belief space planning.
In other words, the belief space planning is more general and
does not require the planning model to satisfy the mathemat-
ical structure of POMDPs. For example, the reward function
R may depend on the belief b and not just on S andA. Addi-
tionally, at each node, all observations in Z are key points
for the searching progress, for a reason is the following child
node of the belief tree branches on all possible actions in A.

Interaction estimators

In what follows, the observations and risk estimators block
shown in Fig. 2 switch the control priority to trigger the men-
tioned manual or automated modes in detail.

Figure 4 shows the observation progress for the dynamic
Dleaf . Let O denote the robot’s sensing position, Pi , Pi+1

and Q denote three marked feature points onDframe and they
are coplanar with O .

∣∣OO ′∣∣ is parallel to |Pi+1Gi+1| and∣∣OO ′∣∣ = |Pi+1Gi+1| = |PiGi | = h where h denotes the

height between the marked point and the ground. Likewise,
|Pi Q| is parallel to d and |Pi Q| = |Pi+1Q| = d where d
denotes the unlocked door leaf’s width.

In such case, we can get |Pi O|, |Pi+1O| and |OQ| by
measurement. According to the geometric relationship, the
observed rotation angle �θ̂i can be written as:

�θ̂ = � Pi QPi+1 = � Pi QO − � Pi+1QO, (6)

where

� Pi QO = arccos
|Pi Q|2 + |OQ|2 − |OPi |2

2 |Pi Q| · |OQ|
� Pi+1QO = arccos

|Pi+1Q|2 + |OQ|2 − |OPi |2
2 |Pi+1Q| · |OQ| .

For Dleaf , the moment of inertia around the door axis is:

I = 1

3
md2, (7)

where m denotes the Dleaf mass. Based on Eqs. (6) and (7),
the observed angular kinetic energy ÊDleaf around the door
axis can be written as:

ÊDleaf = 1

2
I ω̂2, (8)

where ω̂ = �θ̂�t and �t denotes the observation of time
unit.

In this paper, ÊDleaf indicates the risk estimators block to
switch and trigger the above balance mechanism. Combing
with Eq. (8), we treat the risk levels coming from Dleaf as
inputs, train and divide them into four pre-defined parts (e.g.,
no risk, low risk, middle risk and high risk), which can be
written as:

Z =

⎧⎪⎪⎨
⎪⎪⎩

z0 = no risk ÊDleaf = 0
z1 = low risk 0 < ÊDleaf ≤ Emin

z2 = middle risk Emin < ÊDleaf < Emax

z3 = high risk Emax ≤ ÊDleaf

, (9)

where Emin and Emax denote the minimum energy and max-
imum energy to trigger the child node in belief tree (see Fig.
3). In addition, due to the resisting force Fr(t) coming from
rotation friction and air resistance, ÊDleaf could gradually
decrease to zero in the door-closing progress.

Respondingmeasures

Last, four types of responding measures shown in Fig. 5, i.e.,
telemanipulation actions and other three types of emergency
actions for self-protection, are presented.

For the robot platform, to deal with emergencies in the
limited workspace, the simultaneous multi-action between
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Fig. 3 POMDP planning performs a lookahead search on the belief tree

Fig. 4 Observation progress for
Dleaf

chassis and arm part leads to complicated movements, even
mission failure. To simplify the problem, we assume that
action implementation related to the chassis and arm part
is mutually exclusive. Based on this, there are four typical
classes of actions a ∈ A in the dynamic workspace:

A =

⎧
⎪⎪⎨
⎪⎪⎩

a0 = {telemanipulation}
a1 = { on guard }
a2 = {defense}
a3 = {escape}

, (10)

where
telemanipulation denotes a task-related action subset,

which is well-behaved human-in-the-loop operations to deal
with work, as shown in Fig. 5a;

on guard denotes to stop current actions and estimate the
collision risk, ready to take the next action according to cir-
cumstances, as shown in Fig. 5b;

defense denotes to defense actively the risk of the collision
damages using the dexterous arm part. Figure 5d shows the
defense part might be the end-effector. Consider that the end-
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Fig. 5 Typical responding
actions in interactive workspace

effector has a fragile structure to break and usually expensive,
which is not suitable for actual applications. In contrast, using
the elbow joint to defense plays a dominant role as active
self-protection shown in Fig. 5e;

escape denotes to escape out of the workspace before col-
lision damages, as shown in Fig. 5c.

The rewards for taking ai after zi are pre-trained as the
following Table 1. Let good = +1, ok = 0, and bad =
−1. We treat π(ai , zi |i=0,1,2,3) as balance policy between

safety and efficiency performance in the dynamicworkspace.
Among them,π(a0, z0) andπ(a3, z3) are traditional research
area to improve performance or stress reaction, which are the
subset of our proposed balance method.

Note that the higher risk level, the less time can be used
to act π(ai , zi |i=1,2,3), which requires control based on risk
time optimization. Let tzi denote the collision time in the risk
level zi without considering safety-critical measures. Obvi-
ously, we can get tz3 < tz2 < tz1 , and the action controller
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Table 1 Actions at different risk
levels and their rewards function

R
(
ai , z j |i, j=0,1,2,3

)
z0|no risk z1|low risk z2|middle risk z3|high risk

a0|telemanipulation Good Ok Bad Bad

a1|on guard Bad Good Bad Bad

a2|defense Bad Bad Good Bad

a3|escape Bad Bad Ok Good

Fig. 6 Schematic of the balance policy and control method

fai (·) can be written as:

min
0<tai <tzi

{
fai (q, q̇, tai ) : qa0 → qai ∈ R

D
}
i = 1, 2, 3,

(11)

where tai denotes the time to perform the telemanipulation
configuration qa0 ∈ a0 to the desired configuration qai ∈
ai . It is switching control progress to self-protection during
the telemanipulations. Based on these, the schematic of the
proposed balance policy and control method is shown in Fig.
6.

Experiments and results

In this section, we will present our experimental conditions
first and then set up four types of experiments to verify the
proposed balance method’s efficiency.

Experimental set-up

Figure 7 shows the outlook of the human-in-the-loop robot
platform and the dynamic workspace, which is constructed
by a standardized power cabinet. The robot platform is
mainly composed of a chassis, a 6-DOFs arm, an end-effector
and a Kinect, which faces the opened door and runs at 30
frames per second on the chassis. In the dynamic workspace,
the specific telemanipulation task is to turn on a switch for
electricity supply. Table 2 shows more detailed information
and other components.

Figure 8 shows the robot platform’s geometric relation-
ship during switch work. In the top view, the chassis is partly
standing in the fan-shaped area, whose escape is opposite to
the end-effector’s working orientation. Without considering
safety-guaranteed measures, the collision would be at some
position on the chassis after tzi , which could be acquired
by using the fan with no, low, middle or full power for
door-closing. After that, the 6-DOFs arm indicates the rela-
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Fig. 7 Human-in-the-loop robot
platform and door-closing
workspace in a power cabinet
box

Table 2 Robot platform and
power cabinet box equipment
list

No. Type Name Description

1 Mobile chassis None Size: 0.698 m × 0.598 m × 0.284 m

2 Subcontroller None ROS/Moveit!, ubuntu 16.04, ROS kinectic

3 Power source AC/DC 220VAC/48VDC

4 Depth camera Kinect Version 2, attached on chassis

5 Computation On-board PC i7-4720HQ, 8 GB RAM, 245 GB SSD

6 Robotic arm AUBO i5 6-DOFs, max length: 1.0225 m

7 Network receiver None Wireless network receiver

8 Electric fan AUX A switch to low/middle/full power (130 W)

9 Fan-shaped area None Robot is in collision risk standing in this area

10 Power cabinet door None m: 15.2 kg, size: 2.05 m × 0.72 m × 0.05 m

11 End-effector None Two-finger gripper

12 RGB camera UVC camera Eye in hand with camera calibration

13 Switch Power switch The current handwork in the cabinet box

14 Joystick None Telemanipulation controller

tionship between each joint’s coordinate system by utilizing
red, green, and blue, respectively denote the coordinate axis
xi , yi , and zi . The base coordinate system x0, y0, and z0 is
attached to the chassis. We acquire the arm’s initial configu-
ration qa20 as

qa20 = [1.124,−0.947,−1.237,−0.1426, 0.4637, 0.6819]
rad,

which comes from the telemanipulation current configuration
to reach the switch.

Figure 9 show the Kinect camera’s view and the eye view
on hand. Based on the two views, a well-trained human oper-
ator could drive our robot platform to activate the policy
π(a0, z0). In this case, a0 denote action (ai0 ∈ a0|i=1,···,7)
step as: move-in workspace; reach, clamp, rotary and loosen
the switch; take arm back, and move-out workspace (see
Fig. 7). InKinect camera view, the two-dimensional barcodes
are detected and measured by point cloud, which are marked
positions P and Q to get the distances |Pi O|, |Pi+1O|, and
|OQ| (see Fig. 4). In the following experiments, we only use
the Kinect camera as the risk estimator.
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Fig. 8 The robot platform’s
initial conditions and geometric
relationship

Fig. 9 The views of the Kinect
camera and the eye on hand

Results and analysis

Based on the mentioned experimental conditions, π(ai , zi
|i=0,1,2,3) were implemented on the robot platform against
the door-closing, as shown in Fig. 10.

Figure 10a shows a balance policy sequences to human–
robot collaborative experiments with π(a20 |qa20 , z0),
π(on−guard ∈ a1, z1) andπ(elbow−defense ∈ a2, z2). The
responding results are shown in Fig. 11. In the left column
of Fig. 11, |OQ| is a constant because the chassis is sta-
tionary in the workspace; |OP| and � Pi QO are gradually
decreasing with wind force Fw(t) after time t2, and interrupt
the change when the defense collision happens. We use the
local maximums in ÊDleaf to judge zi changes. The judg-
ment is true when zi is changed for the first time from z0 to
another higher level. Let Emin = 0.2J and Emax = 0.4J ,

we get the time t2 (Emin < ÊDleaf < Emax) to trigger
π(elbow−defense ∈ a2, z2). During the time (t2 − t1), robot
platform hold on the current configuration qa20 to do next

action a30 , with estimating the ÊDleaf to ensure no more than
Emin = 0.2J . In other words, the robot performed vigilant
self-protective awareness compared with the artificial stop or
pause in telemanipulation.

Risk getting higher after t2, the robot platform would get
the damages more than 1.5 J , which is avoided by elbow-
defense. Responding to zi , the switch operations that require
precise and small-scale motion are assigned to the end-
effector, while the large-scale action for self-protection is fast
and carried out by the chassis or arm.We let the end-effector’s
orientation remain to face the switch and keep end-effector
horizontal movement (see Fig. 9) to pre-trained defense con-
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Fig. 10 Execution of
π(ai , zi |i=0,1,2,3) in real
door-closing scenario

figuration, hoping to continue current work quickly after the
π(elbow−defense, z2). Based on this, the control based on
risk-time optimization is treated as a linear move control in
the end-effector’s workspace with full speed. In the right
column of Fig. 11, all the arm joints are related to the con-
figuration’s execution and have significant changes. Their
angular velocities, ωq1 and ωq5, to get the full speed in a
short time with their physical constraints. The acquired finial
defense configuration qa2 is

qa2 =[−0.96,−0.9715,−1.212,−0.1234, 2.5467, 0.914]rad

Figure 10b shows other balance policy sequences to
human–robot collaborative experiments with π(a20 |qa20 , z0),

π(on−guard ∈ a1, z1) and π(line−escape ∈ a3, z3). The
responding results are shown in Fig. 12. In Fig. 12, bring
into correspondence with three policies in Fig. 11, t1 and t2
are also the states (z0,z1,z3) change time and the responding
action’s start time. |OP| and � Pi QO both get the horizontal
curves after t2. What the difference is, the horizontal curves
in the elbow-defense case, the defense collision stopped the
door close. But in the line-escape case, the reason is that
observation is in the camera’s blind vision when escape out
of theworkspace. The localmaximumat t2 indicates the robot
is at high risk,which triggers the chassis to escape out straight
with chassis’ max speed. Additionally, Compared with the
line-escape action, the on-guard and elbow defense’s advan-
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Fig. 11 The collaborative
experiments of the
telemanipulation, on-guard and
elbow-defense

Fig. 12 The collaborative experiments of the telemanipulation, on-guard and line-escape

tage is having a predictable performance to quick callback
the interrupted work after the risk was relieved, without the
time-consuming cost of re-planning or re-doing move-in the
workspace.

Conclusions

In this paper, a balancing safety against performance approach
for door-closing emergencies in human–robot collabora-
tive manipulation has been proposed. Specifically, We first
established a dynamic disturbance model of the restricted
workspace releasedbydoor-opening.And then, theworkspace
and robot interactions are analyzed using a partially observ-
able Markov decision process (POMDP), thereby making
the balance mechanism executed as belief tree planning.
Responding to the policy, besides the telemanipulation
actions, we clarify other three safety-guaranteed actions: on
guard, escape, and defense for self-protection by estimating
collision risk levels to trigger them. Finally, we propose a
motion controller based on risk time optimization to act the
planned self-protective actions. Our build-up robot platform
and a power cabinet inner dynamic constrained workspace
were setup to verify the validity and efficiency of the pro-

posed planning and control. This paper is to provide guidance
for the safemanipulation and dealwith emergencies of a class
of robot operations and the upgrade of motion planning.

Funding Funding was provided by China Scholarship Council (Grant
no. 201906090196).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Geng N, Chen Z, Nguyen QA, Gong D (2021) Particle swarm opti-
mization algorithm for the optimization of rescue task allocation
with uncertain time constraints. Syst Complex Intell. https://doi.
org/10.1007/s40747-020-00252-2

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s40747-020-00252-2
https://doi.org/10.1007/s40747-020-00252-2


Complex & Intelligent Systems

2. Punakallio A, Lusa S, Luukkonen R (2005) Predictive values of
balance tests for physical work ability in fire and rescue work. Int
Congr Ser 1280:301–303

3. Rahal R, Matarese G, Gabiccini M et al (2020) Caring about the
human operator: haptic shared control for enhanced user comfort
in robotic telemanipulation. IEEE Trans Haptics 13(1):197–203

4. Aboutalebian B, AliTalebi H, Etedali S, Suratgar A (2020) Adap-
tive control of teleoperation system based on nonlinear disturbance
observer. Eur J Control 53:109–116

5. Livatino S, Guastella D, Muscato G et al (2021) Intuitive robot
teleoperation through multi-sensor informed mixed reality visual
aids. IEEE Access 9:25795–25808

6. Lee S, Chwa D (2020) Dynamic image-based visual servoing of
monocular cameramounted omnidirectional mobile robots consid-
ering actuators and target motion via fuzzy integral sliding mode
control. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.
2020.2985931

7. Yahya A, Li A, KalakrishnanM, Chebotar Y, Levine S (2017) Col-
lective robot reinforcement learning with distributed asynchronous
guided policy search. IROS 2017:79–86

8. Shimizu T, Saegusa R, Ikemoto S, Ishiguro H, Metta G (2012)
Self-protective whole body motion for humanoid robots based on
synergy of global reaction and local reflex. Neural Netw 32:109–
118

9. Geng N, Meng Q, Gong D, Chung PWH (2019) How good are dis-
tributed allocation algorithms for solving urban search and rescue
problems? A comparative study with centralized algorithms. IEEE
Trans Autom Sci Eng 16(1):478–485

10. Balta H, Bedkowski J, Govindaraj S, Majek K,Musialik P, Serrano
D (2016) Integrated data management for a fleet of search-and-
rescue robots. J Field Robot 34(3):539–582

11. Lv H, Yang G, Zhou H et al (2020) Teleoperation of collabora-
tive robot for remote dementia care in home environments. IEEE J
Transl Eng Health Med 8:2168–2372

12. Nemec B, Zlajpah L, Ude A (2017) Door opening by joining rein-
forcement learning and intelligent control. ICRA 2017:222–228

13. Quintana B, Prieto S, Adan A, Bosche F (2018) Door detection in
3D coloured point clouds of indoor environments. Autom Constr
85:146–166

14. Su H, Chen K (2019) Design and implementation of a mobile robot
with autonomous door opening ability. IEEE Trans Fuzzy Syst
21(1):333–342

15. Liu C, Gao B, Yu C, Tapus A (2021) Self-protective motion plan-
ning formobilemanipulators in a dynamicdoor-closingworkspace.
Ind Robot. https://doi.org/10.1108/IR-02-2021-0025

16. WangC,Yin L, ZhaoQ,WangW,Li C, LuoB (2020)An intelligent
robot for indoor substation inspection. Ind Robot 47(5):705–712

17. Zhang H, Su B, Meng H (2017) Development and implementation
of a robotic inspection system for power substations. Ind Robot
44(3):333–342

18. Zhao X, Liu Z, Liu Y et al (2017) Structure design and application
of combination track intelligent inspection robot used in substation
indoor. Procedia Comput Sci 107:190–195

19. LuS, LiY,ZhangT (2009)Design and implement of control system
for power substation equipment inspection robot. IROS 2009:93–
96

20. Liu C, He J, Gao B (2019) Movement planning and control of an
overhead power transmission line inspection bionic-robot. IEEE
Cyber 2019:25–29

21. Brooks RA (1991) Intelligence without representation. Artif Intell
47(1–3):139–159

22. Zakerimanesh A, Sharifi M, Hashemzadeh F, Tavakoli M (2021)
Delay-robust nonlinear control of bounded-input telerobotic sys-
tems with synchronization enhancement. IEEE Robot Autom Lett
6(2):2493–2500

23. Natori K, Tsuji T, Ohnishi K, Hace A, Jezernik K (2010) Time-
delay compensation by communication disturbance observer for
bilateral teleoperation under time-varying delay. IEEE Trans Ind
Electron 57(3):1050–1062

24. Bauer C,Milighetti G, YanW,Mikut R (2010) Human-like reflexes
for robotic manipulation using leaky integrate-and-fire neurons.
IROS 2010:2572–2577

25. Renner R, Behnke S (2006) Instability detection and fall avoid-
ance for a humanoid using attitude sensors and reflexes. IROS
2006:2967–2973

26. Osa T (2020) Multimodal trajectory optimization for motion plan-
ning. Int J Robot Res 39(8):983–1001

27. Aoude GS, Luders BD, Joseph JM, Roy N, How JP (2013) Proba-
bilistically safe motion planning to avoid dynamic obstacles with
uncertain motion patterns. Auton Robot 35(1):51–76

28. Luo Y, Bai H, Hsu D, Lee WS (2019) Importance sampling for
online planning under uncertainty. Int J Robot Res 38(2–3):162–
181

29. Kalakrishnan M, Righetti L, Pastor P, Schaal S (2011) Learn-
ing force control policies for compliant manipulation. IROS
2011:4639–4644

30. Abdo N, Kretzschmar H, Spinello L, Stachniss C (2013) Learn-
ing manipulation actions from a few demonstrations. ICRA
2013:1268–1275

31. Chan W, Mizohana H, Chen X, Shiigi Y, Yamanoue Y, Nagat-
sukaM, InabaM (2019)Multimodal sensing and active continuous
closed-loop feedback for achieving reliable manipulation in the
outdoor physical world. J Field Robot 36(1):17–33

32. Chung W, Rhee C, Shim Y, Lee H, Park S (2009) Door-opening
control of a service robot using the multifingered robot hand. IEEE
Trans Ind Electron 56(10):3975–3984

33. Prieto SA, Adán A, Vázquez AS, Quintana B (2019) Passing
through open/closed doors: a solution for 3d scanning robots. Sen-
sors 19(21):4740–4753

34. Rühr T, Sturm J, Pangercic D, Beetz M, Cremers D (2012) A
generalized framework for opening doors and drawers in kitchen
environments. ICRA 2012:3852–3858

35. Englert P (2018)Learningmanipulation skills froma single demon-
stration. Int J Robot Res 37(1):137–154

36. Kim J (2019) Trajectory generation of a two-wheeled mobile robot
in an uncertain environment. IEEE Trans Ind Electron 67(7):5586–
5594

37. Valner R, Vunder V, Zelenak A, Pryor M, Aabloo A, Kruusamäe
K (2018) Intuitive ‘human-on-the-loop’ interface for tele-
operating remote mobile manipulator robots. In: i-SAIRAS 2018
pp. 1–8. https://robotics.estec.esa.int/i-SAIRAS/isairas2018/
Papers/Session%205b/1_valner_isairas2018_final_inline-50-32-
Kruusam%C3%A4e-Karl.pdf

38. WangX,ChenL (2020)Avision-based coordinatedmotion scheme
for dual-arm robots. J Intell Robot Syst 97:67–79

39. Willow garage inc (2010) Beer me, robot. http://www.
willowgarage.com/blog/2010/07/06. Accessed 13 July 2012

40. Wang F, Liu Y, Zhang Y, Gao Y, Xiao L, Wu C (2019) Research
on the shared control technology for robotic wheelchairs based on
topological map. Ind Robot 47(6):825–835

41. Kaelbling LP, Lozano-Pérez T (2013) Integrated task and motion
planning in belief space. Int J Robot Res 32(9–10):1194–1227

42. Thrun S (2002) Probabilistic robotics. CommunACM45(3):52–57

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/TFUZZ.2020.2985931
https://doi.org/10.1109/TFUZZ.2020.2985931
https://doi.org/10.1108/IR-02-2021-0025
https://robotics.estec.esa.int/i-SAIRAS/isairas2018/Papers/Session%205b/1_valner_isairas2018_final_inline-50-32-Kruusam%C3%A4e-Karl.pdf
https://robotics.estec.esa.int/i-SAIRAS/isairas2018/Papers/Session%205b/1_valner_isairas2018_final_inline-50-32-Kruusam%C3%A4e-Karl.pdf
https://robotics.estec.esa.int/i-SAIRAS/isairas2018/Papers/Session%205b/1_valner_isairas2018_final_inline-50-32-Kruusam%C3%A4e-Karl.pdf
http://www.willowgarage.com/blog/2010/07/06
http://www.willowgarage.com/blog/2010/07/06

	Towards a balancing safety against performance approach in human–robot co-manipulation for door-closing emergencies
	Abstract
	Introduction
	Related works
	Workspace construction and problem formulation
	Proposed method
	Balance mechanism
	Interaction estimators
	Responding measures

	Experiments and results
	Experimental set-up
	Results and analysis

	Conclusions
	References




